

RUHR-UNIVERSITÄT BOCHUM

EFFICIENT GRADIENT-BASED NETWORK CALCULUS FOR SCALABLE SYNTHESIS OF NETWORK CONFIGURATIONS

Fabien Geyer (Airbus Central Research & Technology) and **Steffen Bondorf** (Ruhr University Bochum)

Outline aka Bisecting the Paper Title

- (1) Efficient Gradient-based (non-linear optimization)
- (2) Network Calculus
- (3) for Scalable Synthesis of Network Configurations

becomes

I.	(2)	Network Calculus (NC)
	// 0\	41 NO 4 1 ((D)(C))

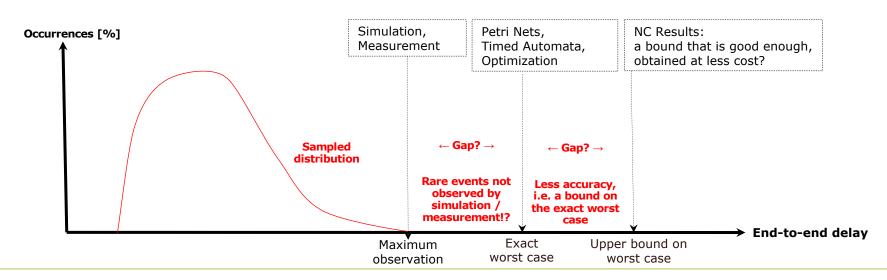
II. (1, 2) the NC extension "DiffNC"

III. (1, 2, 3) Challenge: Flow Paths and Priorities

IV. (3) Evaluation

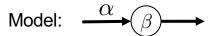
NC Motivation and Basics

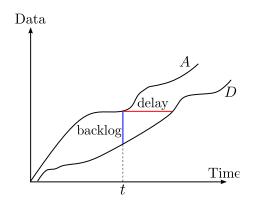
- Theory of deterministic queueing systems [Cruz91]
 - Metric: end-to-end communication delay of a data flow crossing a network
 - NC: a worst-case bound on the end-to-end delay of a specific data flow

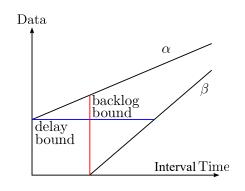


NC Modeling: Bounding Curves in Interval Time

System:
$$A \longrightarrow D$$



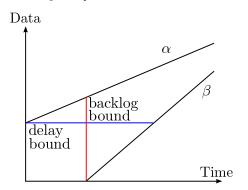




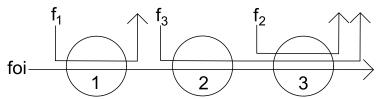
- **Arrival Curve** $\alpha(d) \quad \forall \, 0 \leq d \leq t \, : \, A(t) A(t-d) \leq \alpha(d)$
- (derived from traffic regulation)
- Service Surve $\beta(d)$ $\forall t: A'(t) \geq \inf_{0 \leq d \leq t} \{A(t-d) + \beta(d)\}$
- (derived from scheduler)

NC Analysis: A (min,plus)-algebraic Term

- (min,plus) Operations (complexity depends on curve shapes)
- Concatenation of servers $\beta_1 \otimes \beta_2 = \beta_{1,2}$
- Output bound $\alpha'(t) = \alpha \oslash \beta(t) := \sup \{\alpha(t+u) \beta(u)\}\$
- Delay bound $hdev(\alpha, \beta) = \inf\{d \stackrel{u \ge 0}{\ge 0} : (\alpha \oslash \beta)(-d) \le 0\}$
- Left-over service $\beta(t)\ominus\alpha(t)=\max\{0,\beta(t)-\alpha(t)\}$ (fixed priorities and arbitrary multiplexing)



Example: end-to-end delay bound for data of the flow of interest (foi)
crossing 3 servers.
Priorities (ascending): foi, f1, f2, f3



 $\operatorname{hdev}(\alpha_{\text{foi}},(\beta_1\ominus\alpha_1)\otimes((\beta_2\otimes(\beta_3\ominus\alpha_2))\ominus\alpha_3))$

NC Intro Wrap-Up

The Good

- a quite powerful methodolody for worst-case modeling and analysis
- has found application in the industry (certification of Airbus AFDX network)

· The Bad

analysis of non-feedforward networks is not yet as advanced (not part of this paper)

The "Ugly"

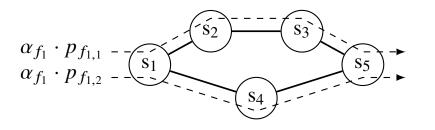
NC is foremost a tool for analysis, not for synthesis,
 i.e., you need a fully specified model, you cannot optimize for open parameters,
 you can only sample your network design space

DiffNC [Geyer22]: NC-based Parameter Synthesis

Idea

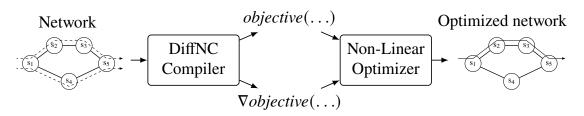
- derive the delay-boudning NC term with some NC analysis
- leave certain parameters open and/or add binary variables for design alternatives
- differentiate w.r.t. these parameters (off the shelf automatic differentiation AD tool)
- let a solver do the heavy lifting (NLopt library)

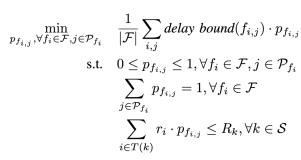
Modeling Example: Encode alternative paths and (global) priorities



DiffNC [Geyer22]: NC-based Parameter Synthesis

The original tool chain





Steps in reverse

- get optimization result
- from a solver (i.e., an NLP algorithm), provided
 - objective term and differentiated objective
 - constraints and differentiated constraints
- have the model be transformed into gradient-based NLP formulation.
 - objective == Network Calculus analysis term
- take the extended model with open parameters

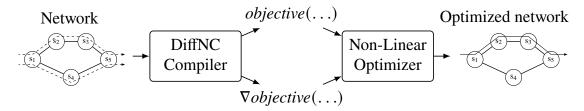
Challenges identified

- the network calculus analysis term is in (min,plus) algebra
- off the shelf AD tools work with (plus,times) algebra
- off the shelf solvers work with (plus,times) algebra

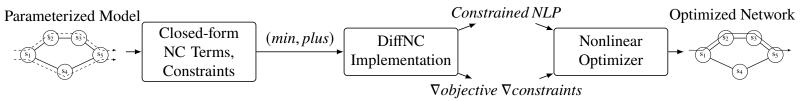
Previous solution: Convert between algebras

Contribution: A new, better scaling tool chain

The original tool chain



The new tool chain



- new AD tool highly specialized for Network Calculus min,plus) operations
- new implementation of a gradient-descent NLP algorithm: Frank-Wolfe

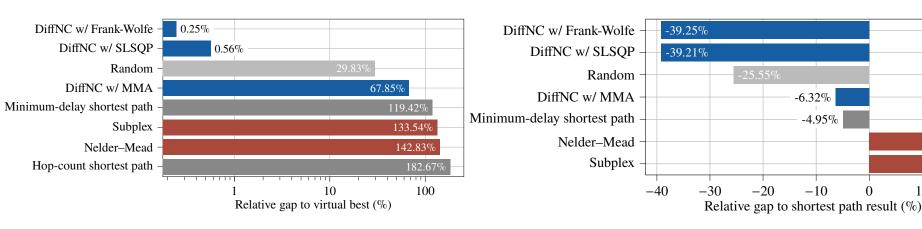
Evaluation

- Networks to be analyzed (prio + path)
 - Random networks of industrial size, see table
 - Airbus A350 with ~1100 flows
- NLP algorithms (max 500 repetitions)
 - Frank-Wolfe (new, own implementation)
 - Sequential Least Squares Programming SLSQP (best in [Geyer22], NLopt library)
 - Method of Moving Asymptotes MMA (good performance in [Geyer22], NLopt library)
 - Subplex and Nelder Mead (both based on simplex method, gradient not considered)
 - Yet, Subplex performed very well in [Herll25]
 - (Weighted) Shortest Path (weight: lower bound on delay, neglecting queueing effects)
 - Random (500 combinations uniformly at random)

Number of	Min	Mean	Median	Max
Servers	8	17.08	16	31
Flows	5	170.67	164	1001
Virtual flows	9	355.22	343	1884
Path combinations	$10^{1.08}$	$10^{46.04}$	$10^{44.10}$	$10^{229.08}$
Path + priority comb.	$10^{2.58}$	$10^{97.41}$	$10^{94.28}$	$10^{530.41}$

Evaluation I (random networks): Delay Bounds

- Metric: Deviation from best result and from shortest path (hop count only, no weights)
- Remember: NLP algorithms do not guarantee to find the optimum



Best Candidates

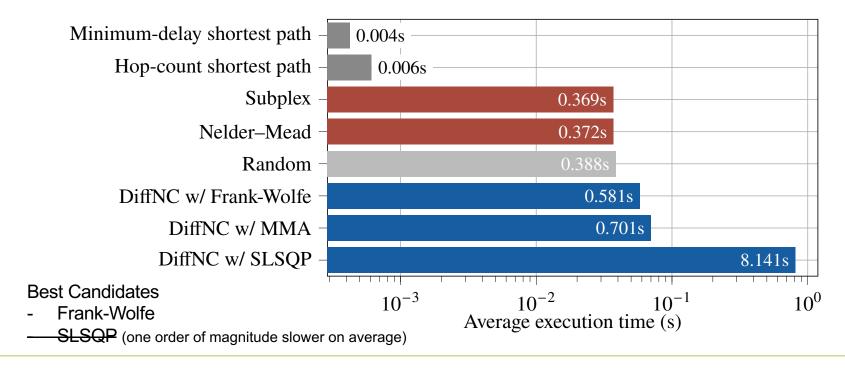
- Frank-Wolfe
- SLSQP

17.95%

18.12%

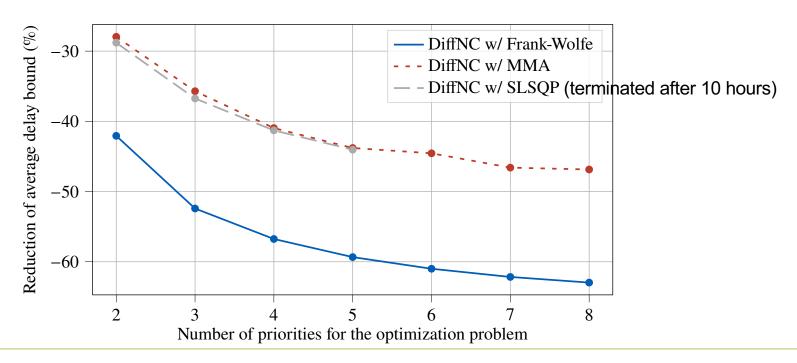
10

Evaluation I (random networks): Execution Times



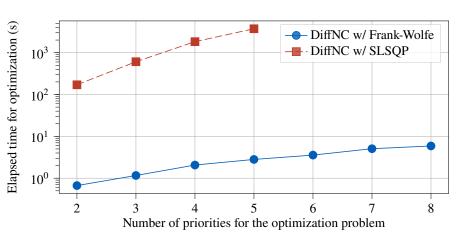
Evaluation II (A350): Scaling of Delay Bounds

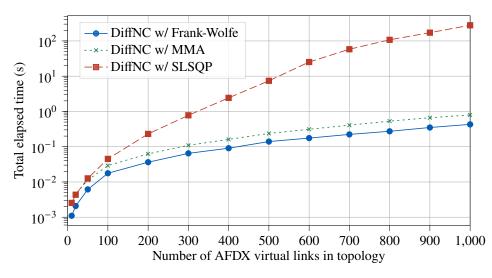
Idea: Increase the number of available priority levels and synthesize a configuration



Evaluation II (A350): Scaling of Execution Times

- Idea(left): Increase the number of available priority levels
- Idea (right): flow paths within (so-called virtual links in AFDX)





Conclusion

- (Gradient-based) NLP optimization can scale to large, complex problems
 - Sophisticated tools are key
 - No detour from Network Calculus (min,plus) algebra to "regular" (plus, times) algebra
 - Choosing the right NLP algorithm for more accurate results in shorter times

Future Work

- [Theoretical] Prove convexity of the problem
- [Practical] Extend to more Network Calculus analyses
 - Currently: fixed priorities and SFA under arbitrary multiplexing [Bondorf16]
 - Related stream of work: FIFO multiplexing with another set of open parameters [Herll25]

References

[Geyer22] F. Geyer and S. Bondorf. *Network Synthesis under Delay Constraints: The Power of Network Calculus Differentiability.*In Proc. of INFOCOM, 2022.

[Cruz91] R. L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation and A Calculus for Network Delay, Part II: Network Analysis.

In IEEE Transactions on Information Theory, 1991.

[Herll25] Lukas Herll and Steffen Bondorf. *Non-linear Programming for the Network Calculus Analysis of FIFO Feedforward Networks*.

In Proc of ACM/SPEC ICPE 2025

[Bondorf16] Steffen Bondorf and Fabien Geyer. Generalizing Network Calculus Analysis to Derive Performance Guarantees for Multicast Flows.

In Proc of ValueTools 2016

