Network Synthesis under Delay Constraints: The Power of Network Calculus Differentiability

Fabien Geyer^{1,2} and Steffen Bondorf³

INFOCOM 2022

Wednesday 4th May, 2022

²Airbus Central R&T Munich

AIRBUS

¹Chair of Network Architectures and Services Technical University of Munich (TUM) ³Faculty of Computer Science Ruhr University Bochum

Motivation

Network synthesis with strict delay constraints

Real-time network synthesis task

- Meet hard real-time end-to-end delay guarantees
- → Formal validation using Network Calculus
- Optimize the network: paths, scheduler parameters, ...
- → Combinatorial problem with exponential growth

Application to Time-Sensitive Networking (TSN) and other real-time networks (eg. AFDX)

2

Main contributions

- Demonstrate how to differentiate network calculus delay bounds → Differential Network Calculus
- Illustrate how to optimize network paths using gradient-based optimization
- Enables scalability to large networks (1000+ flows)

Outline of the talk

Introduction to network calculus

Differential Network Calculus

Numerical evaluation

Conclusions

Introduction to network calculus

Network Calculus - Basics

Basis: Cumulative arrivals and services [Cruz, 1991]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

Service curve β : a server is said to offer a strict service curve β if, during any backlogged period of duration *u*, the output of the system is at least equal to $\beta(u)$

Introduction to network calculus

Bounds vs. worst-case

End-to-end network delay

Introduction to network calculus

Algebraic Network Calculus Analysis

(min,plus) Algebra [Le Boudec and Thiran, 2001]

Based on the previous definitions, the (min,plus) algebra can be defined as:

aggregation:
$$(f + g) (d) = f (d) + g (d)$$

convolution: $(f \otimes g) (d) = \inf_{\substack{0 \leq u \leq d}} \{f(d - u) + g(u)\}$
deconvolution: $(f \oslash g) (d) = \sup_{\substack{u \geq 0}} \{f(d + u) - g(u)\}$
left-over: $(f \ominus g) (d) = \sup_{\substack{0 \leq u \leq d}} \{f(u) - g(u)\}$

The combination of these operations is used for computing end-to-end delay bounds

 \rightarrow Separate Flow Analysis (SFA) and Pay Multiplexing Only Once Analysis (PMOO)

From algebraic NC analysis to differentiable delay bound

Closed-form expression of NC operations

With the assumption of using rate-latency service curves and token-bucket arrival curves, the NC (min,plus) operations have the following closed-form solutions:

aggregation:	$\gamma_{r_1,B_1} + \gamma_{r_2,B_2} = \gamma_{r_1+r_2,B_1+B_2}$
convolution:	$\beta_{R_1,L_1}\otimes\beta_{R_2,L_2}=\beta_{\min(R_1,R_2),L_1+L_2}$
deconvolution:	$\gamma_{r,B} \oslash \beta_{R,L} = \gamma_{r,B+r\cdot L}$
left-over:	$\beta_{R,L} \ominus \gamma_{r,B} = \beta_{R-r,(B+R\cdot L)/(R-r)}$
delay bound:	$h(\gamma_{r,B}, \beta_{R,L}) = B/R + L$

Theorem: Differentiability of delay expression

With the assumption of using rate-latency service curves and token-bucket arrival curves, **a NC end-to-end delay bound is differentiable w.r.t. the curves parameters.**

Application to optimization

Back to main goal: optimize flows' path

Virtual flow concept

A set of paths \mathcal{P}_{f_i} are considered for each flow $f_i \in \mathcal{F}$. For each flow f_i and each potential path $j \in \mathcal{P}_{f_i}$, we define $p_{f_{i,j}}$ as a binary variable representing the choice of path j for flow f_i .

$$\sum_{i \in \mathcal{P}_{f_i}} p_{f_{i,j}} = 1, \forall f_i \in \mathcal{F}$$

For each virtual flow, the arrival curve is reformulated as:

$$\forall \, \mathbf{0} \leq \mathbf{d} \leq t \, : \, \mathbf{A}_{\mathbf{f}_{i,j}}(t) - \mathbf{A}_{\mathbf{f}_{i,j}}(t - \mathbf{d}) \leq lpha_{\mathbf{f}_i}(\mathbf{d}) \cdot \mathbf{p}_{\mathbf{f}_{i,j}}$$

$$f_{1,1} - \underbrace{s_1}_{f_{1,2}} - \underbrace{s_2}_{s_4} - \underbrace{s_3}_{s_5} - \underbrace{s_4}_{s_4} - \underbrace{s_4$$

Illustration of virtual flow concept with one flow taking two potential paths in the server graph.

Lemma

Using the previous theorem, we can differentiate according to the flow's paths.

Constrained nonlinear programming

Using the previous results, the following Nonlinear Program is defined:

$$\begin{split} \min_{\substack{p_{f_{i,j}}, \forall f_i \in \mathcal{F}, j \in \mathcal{P}_{f_i} \\ j \in \mathcal{P}_{f_i} = 1}} & \frac{1}{|\mathcal{F}|} \sum_{i,j} delay \ bound(f_{i,j}) \cdot p_{f_{i,j}} \\ \text{s.t.} & 0 \le p_{f_{i,j}} \le 1, \forall f_i \in \mathcal{F}, j \in \mathcal{P}_{f_i} \\ & \sum_{j \in \mathcal{P}_{f_i}} p_{f_{i,j}} = 1, \forall f_i \in \mathcal{F} \\ & \sum_{i \in \mathcal{T}(k)} r_i \cdot p_{f_{i,j}} \le R_k, \forall k \in \mathcal{S} \\ & \sum_{j \in \mathcal{P}_{f_i}} delay \ bound(f_{i,j}) \cdot p_{f_{i,j}} \le Req. \end{split}$$

Can be optimized using gradient-based optimization

Other objective functions

Using nonlinear utility functions U_i for the delay bounds

$$\min_{p_{f_{i,j}},\forall i,j} \sum_{i} U_i\left(\sum_{j} \textit{delay bound}(f_{i,j}) \cdot p_{f_{i,j}}\right)$$

Tail of the delay bound distribution

$$\min_{p_{f_{i,j}}, \forall i,j} \max_{i} \left(\sum_{j} \textit{delay bound}(f_{i,j}) \cdot p_{f_{i,j}} \right)$$

Putting it all together in practice

Practical and efficient way of computing delay bounds and their derivatives w.r.t. the paths

- Closed-form expressions of the gradient (eg. with SymPy [Meurer et al., 2017]) → Poor scalability
- Automatic Differentiation with computer algebra system using CasADi [Andersson et al., 2019] ightarrow Good scalability

Efficient gradient-based optimizer

Sequential least squares quadratic programming (SLSQP) [Kraft, 1988, Johnson, 2020] showed great performance

Evaluated networks and other methods

Table 1: Statistics about the small networks

Number of	Min	Mean	Max
Servers	3	8.68	18
Flows	3	9.70	21
Virtual flows	4	18.62	45
Path combinations	10 ^{0.30}	10 ^{2.07}	10 ^{5.52}

Used for comparison against:

- Bruteforce approach
- Mixed-Integer Linear Programming

Table 2: Statistics about the large networks

Number of	Min	Mean	Max
Servers	8	17.08	31
Flows	5	170.67	1001
Virtual flows	9	355.22	1884
Path combinations	10 ^{1.08}	10 ^{46.04}	10 ^{229.08}

Used for comparison against:

- Randomized search
- Shortest path (i.e. similar to Dijkstra's algorithm)
- Meta-heuristic algorithms (eg. evolution-based)
- Global optimization

Dataset with networks available at: https://github.com/fabgeyer/dataset-infocom2022

Optimality against a bruteforce approach

How close are we to the optimal solution?

Metric used:

 $RelGap_{method} = \frac{objective_{method}}{objective_{Bruteforce}} - 1$

Method	Optimum found	Rel. gap to bruteforce	Avg. exec. time
Bruteforce	-	-	123,05 s
DiffNC w/o restarts	85,30%	0,17%	0,05 s
DiffNC w/ restarts	99,53 %	7,1 $ imes$ 10 ⁻⁴ %	0,17 s

Average relative gap to the best objective

Execution time

DiffNC vs. MILP formulation (based on [Bouillard et al., 2010])

Conclusions

Applications and extensions

Priority assignment

One virtual flow for each potential priority class. DiffNC used for **differentiating w.r.t. the priority**

Packet scheduling parameters

DiffNC used for **differentiating w.r.t. scheduler weights** and other parameters of schedulers

Time-Sensitive Networking

Some flows are TDMA scheduled:

$$\beta_{\mathsf{TDMA}}(t) = R \cdot \max\left(\left\lfloor \frac{t}{c} \right\rfloor s, t - \left\lceil \frac{t}{c} \right\rceil (c - s)\right)$$

It is also possible to differentiate w.r.t. the cycle parameters *c* and *s*.

Deep learning

Recent interest for applying ML to Network Calculus [Geyer and Bondorf, 2019, Geyer et al., 2021, Mai and Navet, 2021] DiffNC can also be used for **true end-to-end back propagation**

Conclusions

Contributions

- Demonstrated how to differentiate network calculus delay bounds
- Application to optimization of flows' path with nonlinear programming
- Methods and techniques for using it in practice and making it scale
- Dataset: https://github.com/fabgeyer/dataset-infocom2022

Future work

- Application to Time-Sensitive Networking
- Application to Deep Learning

Fabien Geyer"	Steffen Bondorf ¹
*Ados Contal R&T Technical University of Mana Munich, Germany Manich, Germany	In Praceity of Computer Science Rule University Bochson, Germany
A set of the set of th	The power resonance of SC (solid Restands Factor Sequence (Sequence) and Sequence (Sequence) and Sequence sequence indicational power for variating indication stress to sequence indicational power (Sequence) and Sequence (Sequence) and Sequence (Sequence) and Sequence mathematication (Sequence) and Sequence (Sequence) sequence
We have an activity of a strength set of the s	In process part of the two in the dependence of the two in the dependence of the two in the dependence of the two interpret part of the dependence of the d

Network Synthesis under Delay Constraints:

Bibliography

[Andersson et al., 2019] Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019).

 $\mathsf{CasADi}-\mathsf{A}$ software framework for nonlinear optimization and optimal control.

Mathematical Programming Computation.

[Le Boudec and Thiran, 2001] Le Boudec, J.-Y. and Thiran, P. (2001).

Network Calculus: A Theory of Deterministic Queuing Systems for the Internet.

Springer-Verlag.

[Bouillard et al., 2010] Bouillard, A., Jouhet, L., and Thierry, É. (2010).

Tight performance bounds in the worst-case analysis of feed-forward net-works.

In Proc. of IEEE INFOCOM.

[Cruz, 1991] Cruz, R. L. (1991).

A calculus for network delay, part I: Network elements in isolation. *IEEE Trans. Inf. Theory*, 37(1):114–131.

[Geyer and Bondorf, 2019] Geyer, F. and Bondorf, S. (2019).

DeepTMA: Predicting effective contention models for network calculus using graph neural networks.

In Proc. of IEEE INFOCOM.

[Geyer et al., 2021] Geyer, F., Scheffler, A., and Bondorf, S. (2021).

Tightening Network Calculus Delay Bounds by Predicting Flow Prolongations in the FIFO Analysis.

[Johnson, 2020] Johnson, S. G. (2020).

The NLopt nonlinear-optimization package - version 2.7.0.

[Kraft, 1988] Kraft, D. (1988).

A software package for sequential quadratic programming.

Technical Report DFVLR-FB 88-28, DFVLR, Institut für Dynamik der Flugsysteme, Germany.

[Mai and Navet, 2021] Mai, T. L. and Navet, N. (2021).

Improvements to deep-learning-based feasibility prediction of switched Ethernet network configurations.

In Proc. of RTNS.

[Meurer et al., 2017] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A. (2017). SymPy: symbolic computing in Python.

PeerJ Computer Science.