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Motivation

Network synthesis with strict delay constraints

Real-time network synthesis task

e Meet hard real-time end-to-end delay guarantees
— Formal validation using Network Calculus

e Optimize the network: paths, scheduler parameters, ...
— Combinatorial problem with exponential growth

Application to Time-Sensitive Networking (TSN) and other

real-time networks (eg. AFDX)

Main contributions

- - - MILP formulation

Solve time (s)
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e Demonstrate how to differentiate network calculus delay bounds — Differential Network Calculus

e |llustrate how to optimize network paths using gradient-based optimization
e Enables scalability to large networks (1000+ flows)
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Outline of the talk

Introduction to network calculus
Differential Network Calculus
Numerical evaluation

Conclusions
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Introduction to network calculus
Network Calculus — Basics

Data

«

Delay Bound

Time

Basis: Cumulative arrivals and services [Cruz, 1991]

A D

Arrival curve a: A(t) — A(t — s) < a(s),Vt < s

Service curve 3: a server is said to offer a strict
service curve f if, during any backlogged period of
duration u, the output of the system is at least equal to
B(u)
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Introduction to network calculus

Bounds vs. worst-case
Probability
Worst-case Bound

Measurements
Simulation

A\ Y

End-to-end network delay
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Introduction to network calculus
Algebraic Network Calculus Analysis

(min,plus) Algebra [Le Boudec and Thiran, 2001]
Based on the previous definitions, the (min,plus) algebra can be defined as:

aggregation: (f + g) (d) = (d) +g(d)

convolution: (f ® g) (d) {f —u)+g(u)}
deconvolution: (f @ g) (d) = sup {f (d+u) —g(u)}
u>0
left-over: (fo g) (d) = sup {f(u) — g(u)}
0<u<d

The combination of these operations is used for computing end-to-end delay bounds

— Separate Flow Analysis (SFA) and Pay Multiplexing Only Once Analysis (PMOO)
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Differential Network Calculus
From algebraic NC analysis to differentiable delay bound

Closed-form expression of NC operations
With the assumption of using rate-latency service curves and token-bucket arrival curves, the NC (min,plus) operations
have the following closed-form solutions:

aggregation: Yry,By + Vrp,By = Vry+r2,B1+B,
convolution:  BR,.1; ® BRy.,L, = Bmin(Ry,Ra).Ly+Lo
deconvolution: Yr.B @ BRL = Vr.Ber-L
left-over:  BrL © .8 = BR—r,B+R-L)/(R—1)
delay bound: h(v.B,BRL)=B/R+L

Theorem: Differentiability of delay expression

With the assumption of using rate-latency service curves and token-bucket arrival curves, a NC end-to-end delay
bound is differentiable w.r.t. the curves parameters.
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Differential Network Calculus

Application to optimization

Back to main goal: optimize flows’ path

Virtual flow concept
A set of paths P, are considered for each flow f; € F.
For each flow f; and each potential path j € Py, we define
pr,; as a binary variable representing the choice of path j
for flow f;.

> py =1VieF

JePy;
For each virtual flow, the arrival curve is reformulated as:

VO < d <t Ag () — Ag(t — d) < ag(d) - pr

lllustration of virtual flow concept with one flow taking two
potential paths in the server graph.

Using the previous theorem, we can differentiate according to the flow’s paths.
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Differential Network Calculus

Constrained nonlinear programming

Using the previous results, the following Nonlinear
Program is defined:

min delay bound(f;
Py VHEF JEPY, \F| Z 4 (h) Pi;
s.t. OSP,".JS‘I,VfiE]:,]EPf’-

> by =1.VieF
j€Py;

Z I 'pfl.yl. < Rk,Vk €S
ieT(k)

>~ delay bound(fi)) - p;,; < Req.

jePry,

Can be optimized using gradient-based optimization

Other objective functions
Using nonlinear utility functions U; for the delay bounds

mlg ZU, Zdelaybound(f,,)
Py Vi
j

Tail of the delay bound distribution

min max | > delay bounal(f;;) - p
Pri Vi i 7
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Differential Network Calculus
Putting it all together in practice

Practical and efficient way of computing delay bounds and their derivatives w.r.t. the paths

e Closed-form expressions of the gradient (eg. with SymPy [Meurer et al., 2017]) — Poor scalability
e Automatic Differentiation with computer algebra system using CasADi [Andersson et al., 2019] — Good scalability

Efficient gradient-based optimizer

e Sequential least squares quadratic programming (SLSQP) [Kraft, 1988, Johnson, 2020] showed great performance

Network objective...) Optimized network

DiffNC Non-
Compiler

Linear
Optimizer
Vobjective(...)
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Numerical evaluation

Evaluated networks and other methods

Table 1: Statistics about the small networks Table 2: Statistics about the large networks
Number of Min  Mean Max Number of Min Mean Max
Servers 3 8.68 18 Servers 8 17.08 31
Flows 3 9.70 21 Flows 5 170.67 1001
Virtual flows 4 18.62 45 Virtual flows 9 355.22 1884
Path combinations 10030 10207 10552 Path combinations 10108  1046.04  1(229.08
Used for comparison against: Used for comparison against:
e Bruteforce approach e Randomized search

e Mixed-Integer Linear Programming Shortest path (i.e. similar to Dijkstra’s algorithm)

Meta-heuristic algorithms (eg. evolution-based)

Global optimization
Dataset with networks available at: https://github.com/fabgeyer/dataset-infocom2022

F. Geyer and S. Bondorf — Network Synthesis under Delay Constraints: The Power of Network Calculus Differentiability 1


https://github.com/fabgeyer/dataset-infocom2022

Numerical evaluation

Optimality against a bruteforce approach

How close are we to the optimal solution?

: . Optimum Rel. gap to Avg.
Metric used: objective o Method P found brutgfc:'ce exec. til‘?‘le
RelGapmethod = AobjeCtiveBruteforce —1 Bruteforce - - 123,05s
DiffNC w/o restarts 85,30 % 0,17 % 0,05s

DiffNC w/ restarts 9953% 7,1 x10%% 0,17s
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Numerical evaluation
Average relative gap to the best objective

DiffNC w/ SLSQP
DifftNC w/ CCSA

DiffNC w/ MMA

DifftNC w/ IPOPT
DiffNC w/ BONMIN
Delay-based Shortest Path
Expo. Evo. Strategies
Cov. Mat. Adapt. Evo. Strat.
Particle Swarm Opt.
Random(M=1000)
Random(M=500)
Compass Search
Artificial Bee Colony
Random(M=10)

T T T TTT171] T T T T1T] T T T T1T7]
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Relative gap to best objective (%)

F. Geyer and S. Bondorf — Network Synthesis under Delay Constraints: The Power of Network Calculus Differentiability 13



Numerical evaluation

Execution time

Hop-count Shortest Path
Delay-based Shortest Path
Random(M=10)

DifftNC w/ BONMIN
DiffNC w/ IPOPT
Random(M=500)

Particle Swarm Opt.
Compass Search

Expo. Evo. Strategies
DiftNC w/ SLSQP
Random(M=1000)

Cov. Mat. Adapt. Evo. Strat.
Artificial Bee Colony
DifftNC w/ MMA

DiffNC w/ CCSA

1072 107! 100 10!
Median execution time (s)
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Numerical evaluation
DiffNC vs. MILP formulation (based on [Bouillard et al., 2010])

Solve time (s)
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Conclusions
Applications and extensions

Priority assignment

One virtual flow for each potential priority class. DiffNC
used for differentiating w.r.t. the priority

prlo 1- T T~
prlo 2 -
pr10 3~

Time-Sensitive Networking
Some flows are TDMA scheduled:

Bromal(t) = R - max (HJ s, t— E-‘ (c— s))

It is also possible to differentiate w.r.t. the cycle
parameters c and s.

Packet scheduling parameters

DiffNC used for differentiating w.r.t. scheduler weights
and other parameters of schedulers

Deep learning

Recent interest for applying ML to Network Calculus
[Geyer and Bondorf, 2019, Geyer et al., 2021,

Mai and Navet, 2021]

DiffNC can also be used for true end-to-end back
propagation

F. Geyer and S. Bondorf — Network Synthesis under Delay Constraints: The Power of Network Calculus Differentiability



Conclusions

Contributions

¢ Demonstrated how to differentiate network calculus delay bounds
e Application to optimization of flows’ path with nonlinear programming

e Methods and techniques for using it in practice and making it scale

e Dataset: https://github.com/fabgeyer/dataset-infocom2022

Future work

e Application to Time-Sensitive Networking
e Application to Deep Learning

Network Synthesis under Delay Constraints:
The Power of Network Calculus Differentiability
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