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Motivation
Network synthesis with strict delay constraints

Real-time network synthesis task

• Meet hard real-time end-to-end delay guarantees

→ Formal validation using Network Calculus
• Optimize the network: paths, scheduler parameters, . . .

→ Combinatorial problem with exponential growth

Application to Time-Sensitive Networking (TSN) and other
real-time networks (eg. AFDX)
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Main contributions

• Demonstrate how to differentiate network calculus delay bounds→ Differential Network Calculus
• Illustrate how to optimize network paths using gradient-based optimization
• Enables scalability to large networks (1000+ flows)
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Outline of the talk

Introduction to network calculus

Differential Network Calculus

Numerical evaluation

Conclusions
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Abstract—With the advent of standards for deterministic
network behavior, synthesizing network designs under delay
constraints becomes the natural next task to tackle. Network
Calculus (NC) has become a key method for validating industrial
networks, as it computes formally verified end-to-end delay
bounds. However, analyses from the NC framework were thus
far designed to bound one flow’s delay at a time. Attempts to
use classical analyses for derivation of a network configuration
revealed this approach to be poorly fitted for practical use cases.
Take finding a delay-optimal routing configuration: One model
for each routing alternative had to be created, then each flow
delay had to be bounded, then the bounds were compared to
the given constraints. To overcome this three-step procedure,
we introduce Differential Network Calculus. We extend NC to
allow for differentiation of delay bounds w.r.t. to a wide range
of network parameters – such as flow routes. This opens up
NC to a class of efficient nonlinear optimization techniques
taking advantage of the delay bound computation’s gradient.
Our numerical evaluation on the routing problem shows that our
novel method can synthesize flow path in a matter of seconds,
outperforming existing methods by multiple orders of magnitude.

I. INTRODUCTION

With the current developments of networking solutions for
strict reliability and safety requirements (such as IEEE Time
Sensitive Networking (TSN)), formal verification and opti-
mization of safety-critical networks has become an important
step of the design process in various industries [1]. While
using mathematical models and formalization of end-to-end
delay bounds has now become common practice, optimizing
and fine-tuning networks under such formulations remains a
difficult task. This main difficulty arises from the inherent
combinatorial property and nonlinearity of the formal models,
making them hard problems to solve in polynomial time.
Previous attempts were often limited to small networks.

In this paper, we propose a novel approach for modeling,
optimizing and synthesizing networks under hard end-to-end
delay constraints able to scale to networks of realistic sizes.
We introduce an approach able to efficiently synthesize flows’
paths, flows’ priorities, and schedulers’ parameters. We bound
end-to-end delays using Network Calculus (NC) based on the
(min,plus) algebra [2]. While this method is commonly used
in some industries for formally validating delay requirements,
it is rarely used for synthesis or as a design tool. Existing
NC analyses were created to analyze already complete net-
work designs, making them only suitable for a design space
exploration that enumerates and ranks different designs.

We present an extension of NC called Differential Network
Calculus (DiffNC). We formally show that under the as-
sumptions traditionally used for validating industrial networks
(i.e. token-bucket and rate-latency curves), a flow’s delay
bound computed using the (min,plus) algebra is differentiable
according to the different curves’ parameters in the network.
This enables a wide range of applications, among which is
gradient-based nonlinear programming (NLP). Via variable
relaxation, we demonstrate that traditional NLP methods based
on Newton’s method can efficiently solve the aforementioned
network optimization problems – and synthesize configura-
tions. We show that these optimization methods are highly
efficient, scale well and provide the best solutions, making
them applicable to networks of sizes found in the industry.

In the realm of NC, previous works already formalized
NC as an optimization problem, by proposing a formulation
of the end-to-end delay bounds as a linear program (LP)
[3]. This approach is able to achieve tight delay bounds.
We illustrate that this LP formulation can be extended to
multiple flows in its objective function, too. It can be used
to optimize paths of flows, yet, the objective function suffers
from poor expressivity for some important types of constraints.
Additionally, we show that it suffers from poor scalability,
taking more than one hour of computation even on relatively
small networks. Its limitations render the approach unsuitable
for realistic problems.

Our proposed approach has the following benefits. First, we
use an existing NC analysis to derive an (min,plus)-algebraic
term bounding the delay, yet with integer variables encoding
alternatives like potential flow paths. Then, for finding the best
alternative with NLP, we may include nonlinear constraints
and nonlinear objective functions, enabling for concepts like
utility functions [4] on the delay bounds, or even reducing the
tail of the delay bound distribution. Finally, we illustrate that
our approach scales to networks with up to 1000 flows, a size
similar to industrial use-cases [5, 6, 7]. Our implementation is
based on efficient computer algebra system (CAS) and auto-
matic differentiation (AD), enabling us to efficiently compute
the end-to-end delay bounds and their gradient without paying
dearly in terms of computation times. As an application of our
approach, we illustrate how to use DiffNC for finding the best
priorities and certain scheduler parameters in TSN networks.

This paper is organized as follows: Section II presents
the related work, followed by NC in Section III. Section IV
presents the mathematical foundations of DiffNC and suitable
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Introduction to network calculus
Network Calculus – Basics

Time

Data

α

β

Delay Bound

Basis: Cumulative arrivals and services [Cruz, 1991]

DA

Arrival curve α: A (t)− A (t − s) ≤ α(s),∀t ≤ s

Service curve β: a server is said to offer a strict
service curve β if, during any backlogged period of
duration u, the output of the system is at least equal to
β(u)

β
α α

′
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Introduction to network calculus
Bounds vs. worst-case

Probability

End-to-end network delay

Worst-case

Simulation
Measurements

Bound
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Introduction to network calculus
Algebraic Network Calculus Analysis

(min,plus) Algebra [Le Boudec and Thiran, 2001]
Based on the previous definitions, the (min,plus) algebra can be defined as:

aggregation: (f + g) (d) = f (d) + g (d)

convolution: (f ⊗ g) (d) = inf
0≤u≤d

{f (d − u) + g(u)}

deconvolution: (f � g) (d) = sup
u≥0
{f (d + u)− g(u)}

left-over: (f 	 g) (d) = sup
0≤u≤d

{f (u)− g(u)}

The combination of these operations is used for computing end-to-end delay bounds

→ Separate Flow Analysis (SFA) and Pay Multiplexing Only Once Analysis (PMOO)
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Differential Network Calculus
From algebraic NC analysis to differentiable delay bound

Closed-form expression of NC operations
With the assumption of using rate-latency service curves and token-bucket arrival curves, the NC (min,plus) operations
have the following closed-form solutions:

aggregation: γr1 ,B1 + γr2 ,B2 = γr1+r2 ,B1+B2

convolution: βR1 ,L1 ⊗ βR2 ,L2 = βmin(R1 ,R2),L1+L2

deconvolution: γr ,B � βR,L = γr ,B+r·L
left-over: βR,L 	 γr ,B = βR−r ,(B+R·L )/(R−r)

delay bound: h(γr ,B ,βR,L ) = B/R + L

Theorem: Differentiability of delay expression

With the assumption of using rate-latency service curves and token-bucket arrival curves, a NC end-to-end delay
bound is differentiable w.r.t. the curves parameters.
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Differential Network Calculus
Application to optimization

Back to main goal: optimize flows’ path

Virtual flow concept
A set of paths Pfi are considered for each flow fi ∈ F .
For each flow fi and each potential path j ∈ Pfi , we define
pfi,j as a binary variable representing the choice of path j
for flow fi . ∑

j∈Pfi

pfi,j = 1,∀fi ∈ F

For each virtual flow, the arrival curve is reformulated as:

∀ 0 ≤ d ≤ t : Afi,j (t)− Afi,j (t − d) ≤ αfi (d) · pfi,j

s1

s2 s3

s4

s5
f1,1
f1,2

Illustration of virtual flow concept with one flow taking two
potential paths in the server graph.

Lemma

Using the previous theorem, we can differentiate according to the flow’s paths.
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Differential Network Calculus
Constrained nonlinear programming

Using the previous results, the following Nonlinear
Program is defined:

min
pfi,j

,∀fi∈F ,j∈Pfi

1
|F|

∑
i,j

delay bound(fi,j ) · pfi,j

s.t. 0 ≤ pfi,j ≤ 1,∀fi ∈ F , j ∈ Pfi∑
j∈Pfi

pfi,j = 1,∀fi ∈ F

∑
i∈T (k )

ri · pfi,j ≤ Rk ,∀k ∈ S

∑
j∈Pfi

delay bound(fi,j ) · pfi,j ≤ Req.

Can be optimized using gradient-based optimization

Other objective functions
Using nonlinear utility functions Ui for the delay bounds

min
pfi,j

,∀i,j

∑
i

Ui

(∑
j

delay bound(fi,j ) · pfi,j

)

Tail of the delay bound distribution

min
pfi,j

,∀i,j
max

i

(∑
j

delay bound(fi,j ) · pfi,j

)
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Differential Network Calculus
Putting it all together in practice

Practical and efficient way of computing delay bounds and their derivatives w.r.t. the paths

• Closed-form expressions of the gradient (eg. with SymPy [Meurer et al., 2017])→ Poor scalability
• Automatic Differentiation with computer algebra system using CasADi [Andersson et al., 2019]→ Good scalability

Efficient gradient-based optimizer

• Sequential least squares quadratic programming (SLSQP) [Kraft, 1988, Johnson, 2020] showed great performance

Network Optimized network

s1

s2 s3

s4

s5

DiffNC
Compiler

Non-
Linear

Optimizer

objective(...)

∇objective(...)

s1

s2 s3

s4

s5
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Numerical evaluation
Evaluated networks and other methods

Table 1: Statistics about the small networks

Number of Min Mean Max

Servers 3 8.68 18
Flows 3 9.70 21
Virtual flows 4 18.62 45
Path combinations 100.30 102.07 105.52

Used for comparison against:
• Bruteforce approach
• Mixed-Integer Linear Programming

Table 2: Statistics about the large networks

Number of Min Mean Max

Servers 8 17.08 31
Flows 5 170.67 1001
Virtual flows 9 355.22 1884
Path combinations 101.08 1046.04 10229.08

Used for comparison against:
• Randomized search
• Shortest path (i.e. similar to Dijkstra’s algorithm)
• Meta-heuristic algorithms (eg. evolution-based)
• Global optimization

Dataset with networks available at: https://github.com/fabgeyer/dataset-infocom2022
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Numerical evaluation
Optimality against a bruteforce approach

How close are we to the optimal solution?

Metric used:

RelGapmethod =
objectivemethod

objectiveBruteforce
− 1

Optimum Rel. gap to Avg.
Method found bruteforce exec. time

Bruteforce - - 123,05 s
DiffNC w/o restarts 85,30 % 0,17 % 0,05 s
DiffNC w/ restarts 99,53 % 7,1× 10−4 % 0,17 s
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Numerical evaluation
Average relative gap to the best objective

10−1 100 101 102

DiffNC w/ SLSQP
DiffNC w/ CCSA
DiffNC w/ MMA
DiffNC w/ IPOPT

DiffNC w/ BONMIN
Delay-based Shortest Path

Expo. Evo. Strategies
Cov. Mat. Adapt. Evo. Strat.

Particle Swarm Opt.
Random(M=1000)
Random(M=500)
Compass Search

Artificial Bee Colony
Random(M=10)

Relative gap to best objective (%)
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Numerical evaluation
Execution time

10−2 10−1 100 101

Hop-count Shortest Path
Delay-based Shortest Path

Random(M=10)
DiffNC w/ BONMIN

DiffNC w/ IPOPT
Random(M=500)

Particle Swarm Opt.
Compass Search

Expo. Evo. Strategies
DiffNC w/ SLSQP
Random(M=1000)

Cov. Mat. Adapt. Evo. Strat.
Artificial Bee Colony

DiffNC w/ MMA
DiffNC w/ CCSA

Median execution time (s)
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Numerical evaluation
DiffNC vs. MILP formulation (based on [Bouillard et al., 2010])
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Conclusions
Applications and extensions

Priority assignment
One virtual flow for each potential priority class. DiffNC
used for differentiating w.r.t. the priority

s1 s2
fprio=1fprio=2fprio=3

Packet scheduling parameters
DiffNC used for differentiating w.r.t. scheduler weights
and other parameters of schedulers

Time-Sensitive Networking
Some flows are TDMA scheduled:

βTDMA(t) = R ·max
(⌊

t
c

⌋
s, t −

⌈
t
c

⌉
(c − s)

)
It is also possible to differentiate w.r.t. the cycle
parameters c and s.

Deep learning
Recent interest for applying ML to Network Calculus
[Geyer and Bondorf, 2019, Geyer et al., 2021,
Mai and Navet, 2021]
DiffNC can also be used for true end-to-end back
propagation
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Conclusions

Contributions

• Demonstrated how to differentiate network calculus delay bounds
• Application to optimization of flows’ path with nonlinear programming
• Methods and techniques for using it in practice and making it scale
• Dataset: https://github.com/fabgeyer/dataset-infocom2022

Future work

• Application to Time-Sensitive Networking
• Application to Deep Learning
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use classical analyses for derivation of a network configuration
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Take finding a delay-optimal routing configuration: One model
for each routing alternative had to be created, then each flow
delay had to be bounded, then the bounds were compared to
the given constraints. To overcome this three-step procedure,
we introduce Differential Network Calculus. We extend NC to
allow for differentiation of delay bounds w.r.t. to a wide range
of network parameters – such as flow routes. This opens up
NC to a class of efficient nonlinear optimization techniques
taking advantage of the delay bound computation’s gradient.
Our numerical evaluation on the routing problem shows that our
novel method can synthesize flow path in a matter of seconds,
outperforming existing methods by multiple orders of magnitude.

I. INTRODUCTION

With the current developments of networking solutions for
strict reliability and safety requirements (such as IEEE Time
Sensitive Networking (TSN)), formal verification and opti-
mization of safety-critical networks has become an important
step of the design process in various industries [1]. While
using mathematical models and formalization of end-to-end
delay bounds has now become common practice, optimizing
and fine-tuning networks under such formulations remains a
difficult task. This main difficulty arises from the inherent
combinatorial property and nonlinearity of the formal models,
making them hard problems to solve in polynomial time.
Previous attempts were often limited to small networks.

In this paper, we propose a novel approach for modeling,
optimizing and synthesizing networks under hard end-to-end
delay constraints able to scale to networks of realistic sizes.
We introduce an approach able to efficiently synthesize flows’
paths, flows’ priorities, and schedulers’ parameters. We bound
end-to-end delays using Network Calculus (NC) based on the
(min,plus) algebra [2]. While this method is commonly used
in some industries for formally validating delay requirements,
it is rarely used for synthesis or as a design tool. Existing
NC analyses were created to analyze already complete net-
work designs, making them only suitable for a design space
exploration that enumerates and ranks different designs.

We present an extension of NC called Differential Network
Calculus (DiffNC). We formally show that under the as-
sumptions traditionally used for validating industrial networks
(i.e. token-bucket and rate-latency curves), a flow’s delay
bound computed using the (min,plus) algebra is differentiable
according to the different curves’ parameters in the network.
This enables a wide range of applications, among which is
gradient-based nonlinear programming (NLP). Via variable
relaxation, we demonstrate that traditional NLP methods based
on Newton’s method can efficiently solve the aforementioned
network optimization problems – and synthesize configura-
tions. We show that these optimization methods are highly
efficient, scale well and provide the best solutions, making
them applicable to networks of sizes found in the industry.

In the realm of NC, previous works already formalized
NC as an optimization problem, by proposing a formulation
of the end-to-end delay bounds as a linear program (LP)
[3]. This approach is able to achieve tight delay bounds.
We illustrate that this LP formulation can be extended to
multiple flows in its objective function, too. It can be used
to optimize paths of flows, yet, the objective function suffers
from poor expressivity for some important types of constraints.
Additionally, we show that it suffers from poor scalability,
taking more than one hour of computation even on relatively
small networks. Its limitations render the approach unsuitable
for realistic problems.

Our proposed approach has the following benefits. First, we
use an existing NC analysis to derive an (min,plus)-algebraic
term bounding the delay, yet with integer variables encoding
alternatives like potential flow paths. Then, for finding the best
alternative with NLP, we may include nonlinear constraints
and nonlinear objective functions, enabling for concepts like
utility functions [4] on the delay bounds, or even reducing the
tail of the delay bound distribution. Finally, we illustrate that
our approach scales to networks with up to 1000 flows, a size
similar to industrial use-cases [5, 6, 7]. Our implementation is
based on efficient computer algebra system (CAS) and auto-
matic differentiation (AD), enabling us to efficiently compute
the end-to-end delay bounds and their gradient without paying
dearly in terms of computation times. As an application of our
approach, we illustrate how to use DiffNC for finding the best
priorities and certain scheduler parameters in TSN networks.

This paper is organized as follows: Section II presents
the related work, followed by NC in Section III. Section IV
presents the mathematical foundations of DiffNC and suitable
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