PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS

RUB

Peter Detzner | Jana Gödeke

Steffen Bondorf

29. September 2022

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Previously on LCN 2021

Height-balanced [1]:

"... at any node in the tree, the height of any two subtrees of its children differ by at most 1 ..."

Null-balanced [4]:

Definition: "An m-ary tree is null-balanced if any two leaf nodes differ in level by 1"

> 5:0 5:1 5:2 Example Routing Dominating Adjacent Node Table Link Parent Set Node Adjacent Example Figure 5: The nBATON* tree has a height of 6 and 34 nodes in total

[1] H. V. Jagadish et al., "Speeding up Search in Peer-to-Peer Networks with a Multi-Way Tree Structure," in Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data - SIGMOD '06

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Previously on LCN 2021 - SearchExact

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Previously on LCN 2021 – SearchExact Amortization

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Challenges in Peer Discovery

- Peers are autonomous and have heterogenous in terms of capabilities and properties
- Modelled as Key-Value-Pairs
 - Heterogenous
 - Inserting/ Removing at any time
 - Various Update Intervals
 - Flexible Value Types
 - Complex Discovery Select
 - SQL-like: "select Peers where Conference < 2022 and Title == "IEEE LCN"
- Each peer has only a local view
- Data is scattered all over the network

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS System Model

- Each Peer maintains links to
 - Parent, up to m-children,
 - RoutingTable (RT) = LRT + RRT
 - Left- and right adjacent
- Connected Dominating Set (CDS) [2, 3]: A subset of peers P in a network N is a dominating set if every … peer not in P has a neighbor in P. If the peers in P are connected, then P is called CDS
- A CDS consists of Dominating Set Nodes

$$DSN_m(l) = \{i \cdot m \mid i = 2k + 1, k \in \mathbb{N}_0, i \cdot m < m^l\}$$

 $DSN_m(0) = \{0\} \qquad DSN_m(1) = \{\lceil \frac{m}{2} \rceil\}$

[2] Chunlin Yang and Xiuqi Li, "'Dominating-Set-Based' Searching in Peer-to-Peer Networks," International Journal of High Performance Computing and Networking 3, no. 4 (December 1, 2005)

[3] Xiuqi Li and Jie Wu, "Searching Techniques in Peer-to-Peer Networks," Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks (2005): 31. © Fraunhofer IML • open • slide 6

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS An example

- Each DSN is responsible for a set of nodes
 - Upper bound: (2m+1)*m
- Scales automatically with the number of nodes
- Nodes can add/update/remove KVPs in O(1)
- No additional communication overhead need
- Knowledge is scattered across the network
- Node (2:1) sends a peer discovery request φ to one DSN
- DSN forwards the request vertically/horizontally to others DSNs

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Experimental Setup with ns-3

Parameter	ES1 ES	2	ES3	ES4	
Fanouts $m \in \mathbb{N}$	$m = \{2, 4, 8, 16\} \mid m = \{8\}$				
Network Size $N \in \mathbb{N}$	$N = \{1k, 2k, 3k, \\ \dots, 10k\} $ $N = \{2k, 4k, \\ 6k, 8k, 10k\}$			${2k, \ 4k, \ k, \ k, \ 10k}$	
Requesting Nodes	Randomized distribution; 10% of N				
Request Frequency	Normal distribution; $\mu = 20 \ s, \sigma = 4 \ s$				
Query Form	$(\psi_i \wedge \psi_j)$ or $(\psi_i \lor \psi_j)$				
Literal Form	$\psi_k := (Key_k \le x)$				
Maximum Number of KVPs each Node has	10 static 10 dynamic				
KVP Range $\in \mathbb{R}$	Uniform distribution; Interval [0, 10]				
Update Frequency for each KVP	$ \begin{array}{c c} \{\mu_1 = 0.625 \ s, \sigma_1 = 0.125 \ s\}, \\ \{\mu_2 = 1.25 \ s, \sigma_2 = 0.25 \ s\},, \\ \{\mu_{10} = 320 \ s, \sigma_{10} = 64 \ s\} \end{array} $				
Probability for each KVPs Appearance in a Node	0.95		$\{0.5, 0.6, \dots, 1.0\}$	0.95	
Freshness Threshold for KVPs in a DSN	5 :	s		$\{1, 3, 5,, 21\} s$	

KVP = Key-Value Pair; DSN = Dominating Set Node

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Conclusion and Future Work

- Creation of a Null-balanced tree
- Finding peers according to a peer discovery query
- Approach is scalable, requires no additional communication overhead
- Cost O(1) for adding/updating/removing data

Future Work:

- Minimizing the cost for retrieving data
- Minimizing the cost for creating the tree
- Investigation of efficient broadcast algorithms

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS

© Fraunhofer IML · open · slide 10

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Experimental Setup with ns-3

Parameter	ES1 ES2 ES3 ES4	4 *-
Fanouts $m \in \mathbb{N}$	$m = \{2, 4, 8, 16\}$ $m = \{8\}$	ES3 😳 🧧 – +-
Network Size $N \in \mathbb{N}$	$ \begin{vmatrix} N = \{1k, 2k, 3k, \\ \dots, 10k\} \end{vmatrix} \qquad N = \{2k, 4k, \\ 6k, 8k, 10k\} $	
Requesting Nodes	Randomized distribution; 10% of N	Vess
Request Frequency	Normal distribution; $\mu = 20 \ s, \sigma = 4 \ s$	
Query Form	$(\psi_i \wedge \psi_j)$ or $(\psi_i \lor \psi_j)$	0 *
Literal Form	$\psi_k := (Key_k \le x)$	- 0.5
Maximum Number of KVPs each Node has	10 static 10 dynamic	7
KVP Range $\in \mathbb{R}$	Uniform distribution; Interval [0, 10]	ES4 6
Update Frequency for each KVP	$ \left\{ \begin{array}{l} \mu_1 = 0.625 \ s, \sigma_1 = 0.125 \ s \right\}, \\ \{\mu_2 = 1.25 \ s, \sigma_2 = 0.25 \ s \}, \dots, \\ \{\mu_{10} = 320 \ s, \sigma_{10} = 64 \ s \} \end{array} \right. $	ages ·103
Probability for each KVPs Appearance in a Node	$0.95 \qquad \begin{cases} 0.5, 0.6, \\ \dots, 1.0 \end{cases} \qquad 0.95$	
Freshness Threshold for KVPs in a DSN	$5 \ s \qquad \begin{cases} \{1,3,5,\21\} \ s \end{cases}$	

KVP = Key-Value Pair; DSN = Dominating Set Node

PEER DISCOVERY IN TREE-STRUCTURED P2P OVERLAY NETWORKS BY MEANS OF CONNECTED DOMINATING SETS Experimental Setup with ns-3

Number of DSN scales with the network

m -> infinity results n a star-topology

Query evaluation based on local view

DSN	CA	$\mid K_1 \mid$	freshness	ψ_1	$ K_2 $	freshness	ψ_2	ϕ
(0:0)	(0:0)	4	1	t	1	1	t	t
	(1:0)	10	1	f	1	×	u	f
	(1:1)	6	×	u	-	-	u	u
(2:2)	(2:0)	3	×	u	1	1	t	u
	(2:1)	1	×	u	2	×	u	u
	(2:2)	2	1	t		2	f	f
	(2:3)	10	×	u	1	1	t	u

CA = cover area; t = true; f = false; u = undecided

