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Motivation
Worst-Case End-to-End Performance Analysis

Probability

End-to-end network delay

Worst-case

Deadline

Simulation
Measurements

Bound

Tightness

Computation effort

Tightness

Analysis methods

Ideal

• Trade-off between computational effort and tightness
• This talk: network analysis method with good tightness and fast execution
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Background
Network Calculus – Basics

Time

Data

A

D

α

β

Basis: Cumulative arrivals and services [Cruz, 1991]

DA

Arrival curve α: A (t)− A (t − s) ≤ α(s),∀t ≤ s

Service curve β: If the service by system S for a
given input A results in an output D, then S offers a
service curve β ∈ F0 iff

∀t : D(t) ≥ inf
0≤d≤t

{A (t − d) + β(d)}.

β
α α

′
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Background
Network Calculus – FIFO Analysis

How to derive an end-to-end delay bound?

s1 s2 s3
αfoi

αf1

αf2

LUDB – Least Upper Delay Bound
[Bisti et al., 2008, Bisti et al., 2012]

Step 1: Compute the nesting tree
Step 2: Compute an end-to-end service curve

by removing cross-flows step by step
Step 3: Compute the end-to-end delay bound

Nesting: A sequence of servers ("tandem") is called
nested if any two flows have disjunct paths or one flow
is completely included in the path of the other flow.
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Background
Network Calculus – FIFO Analysis

How to derive an end-to-end delay bound?

s1 s2 s3
αfoi

αf1

αf2

LUDB – Least Upper Delay Bound
[Bisti et al., 2008, Bisti et al., 2012]

Step 1: Derive all cuts creating nested subtandems
Step 2: Compute the nesting trees
Step 3: Compute an end-to-end service curves

Step 3a: by removing cross-flows step by step and
Step 3b: by concatenating the intermedite service curves

Step 4: Compute the end-to-end delay bound

Where to cut?

Cutting alternative 1:

s1 s2 s3
αfoi

αf1 α′
f1

αf2

Cutting alternative 2:

s1 s2 s3
αfoi

αf1

αf2 α′
f2

Neither alternative is strictly better than the other
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Background
Network Calculus – FIFO Analysis

How to derive an end-to-end delay bound?

s1 s2 s3
αfoi

αf1

αf2

LUDB – Least Upper Delay Bound
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Step 1: Derive all cuts creating nested subtandems
Step 2: Compute the nesting trees
Step 3: Compute an end-to-end service curves

Step 3a: by removing cross-flows step by step and
Step 3b: by concatenating the intermedite service curves

Step 4: Compute the end-to-end delay bound

What’s the problem with cutting alternative 2?

s1 s2 s3
αfoi

αf1

αf2 α′
f2

h(αfoi, ((β1 ⊗ (β2 	 α2))	 α1)

⊗(β3 	 (α2 � (β2 	 ((αfoi + α1)� β1)))))

with

convolution: (f ⊗ g) (d) = inf
0≤u≤d

{f (d − u) + g(u)}

deconvolution: (f � g) (d) = sup
u≥0
{f (d + u)− g(u)}
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Contribution
Network Calculus – LUDB and Flow Prolongation

What can we do about it?

s1 s2 s3
αfoi

αf1

αf2

Create a nested tandem in a different way,
before we face the cutting-problem!

s1 s2 s3
αfoi

αf1 αFP
f1

αf2

h(αfoi + α1, β1 ⊗ ((β2 ⊗ β3)	 α2))
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Contribution
Network Calculus – LUDB and Flow Prolongation

Does it Scale?

Flow prolongation in general does not [Bondorf, 2017],
e.g., see:

s1 s2 s3 s4

foi

f1
f2

Not if you try to search exhaustively,
not even when considering the objective to convert
non-nested tandems to nested tandems.

Thus, we converted the tandem into a Graph Neural
Network:

s1 s2 s3 s4

f2

f1 foi

Prolong?

We call the new analysis DeepFP.
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Heuristic based on Graph Neural Networks
Graph Neural Networks – Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict
feature of nodes ov

Principle

• Each node has a hidden vector hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are propagated through the graph

Algorithm

• Initialize h(0)
v according to features of nodes

• for t = 1, ... , T do
• a(t)

v = AGGREGATE
({

h(t−1)
u | u ∈ Nbr(v)

})
• h(t)

v = COMBINE
(

h(t−1)
v , a(t)

v

)
• return READOUT

(
h(T )

v

)
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Heuristic based on Graph Neural Networks
Graph Neural Networks – Illustration

A

B

C

D E
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D E

B

C

D

h(t)
A

h(t−1)
B

h(t−1)
C

h(t−1)
D

AGGREGATE

& COMBINE
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Contribution
Network Calculus – LUDB and Flow Prolongation and Predictions

s1 s2 s3 s4

f2

f1 foi

Prolong?
DeepFPn

• Converts the Network Calculus graph into a GNN network
• Predicts a score for each prolongation node,

ranking the top prolongation choices
• Let’s Network Calculus pick the top n ≥ 1

combinations of prolongations, to compute n valid delay bounds
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DeepFP Overview
... and Related Work

Exhaustive search

Original network

s2s1 s3 s4

foi

f1

f2

FP Alternative 1
s2s1 s3 s4

foi

f1

f2
FP Alternative n

s2s1 s3 s4

foi

f1

f2
. . .

NC Analysis NC Analysis. . .

delay1 delayn

delayFP = min(delay1, ... , delayn)

Original network

s2s1 s3 s4

foi

f1

f2

Prediction
s2s1 s3 s4

foi

f1

f2

Graph transf. + GNN

NC Analysis

delayDeepFP

Related Work on NC + GNN:
[Geyer and Carle, 2018,
Geyer and Bondorf, 2019,
Geyer and Bondorf, 2020],
all of which focuses on the
complexities in FIFO systems.
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Evaluation
Benchmark to LUDB and Random Heuristic
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That’s it, thank you for your attention!
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