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Motivation

Worst-Case End-to-End Performance Analysis

Probability

Deadline

Worst-case Bound

Measurements
Simulation Tightness

End-to-end network delay

e Trade-off between computational effort and tightness
e This talk: network analysis method with good tightness and fast execution

Computation effort

Analysis methods .

Ideal

Tightness
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Motivation
Network Calculus — Basics

Data B3Ws: cumulative arrivals and services [Cruz, 1991a]
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Motivation
Network Calculus — Network Analysis

How to compute end-to-end performance?
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TFA — Total Flow Analysis [Cruz, 1991b]

Step 1: Compute delay at each server on the path

f4 P
fs Sq So S3 S4
fa 32 3!

Step 2: Sum delays

Server concatenation [Le Boudec and Thiran, 2001]

(min, +) algebra gives us:

’
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— Pay Bursts Only Once principle
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Motivation
Network Calculus — Network Analysis

SFA — Separate Flow Analysis
[Le Boudec and Thiran, 2001]

Step 1: Compute per-server residual service

Step 2: Concatenate the servers

e e
~—

Step 3: Compute delay over concatenated server

fa

PMOO - Pay Multiplexing Only Once
[Schmitt et al., 2008b]

Step 1: Concatenate the servers

f, P

f1 Sq So S3 ® S4
f f3

Step 2: Compute residual service

e (e
~

Step 3: Compute delay over concatenated server

f3
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Motivation
Network Calculus — TMA

TMA — Tandem Matching Analysis [Bondorf et al., 2017]

e Main concept: apply concatenation only for some servers
e Exhaustive search to find which concatenations will result in the tightest end-to-end delay — O (2”“)

SFA Alternative 1
’ /
o Cut Cut Q o Cut o
B1 @ B2
PMOO Alternative 2
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Motivation
Network Calculus — DeepTMA

Computation effort

TMA
/
/

Opt.

SFA DeepTMA
PMOO
TFA Ideal
Tightness

Opt.: [Schmitt et al., 2008a][Bouillard et al., 2010]

Approach: Avoid TMA'’s exhaustive search using ML

[Geyer and Bondorf, 2019]

— DeepTMA:

e Main idea: use neural networks for predicting best cuts
e Even if the heuristic is wrong, the bounds are still valid

Network
of servers
and flows

Network Calculus
TMA Analysis

4
Cuts Recommendation
|

Heuristic

Figure 1: Approach

End-to-End
Latencies
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Motivation
Network Calculus — Contributions

[Geyer and Bondorf, 2019] introduced DeepTMA, but did not explore it's scalability or robustness

New results: Explore the robustness of DeepTMA

¢ Influence of network size (number of flows and servers) and topology type on accuracy and tightness?
e Scalability on larger networks (up to 10000 s of flows)?
e |mportance of features used by the machine learning algorithm?
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Outline

DeepTMA: Heuristic based on Graph Neural Networks

Numerical evaluation

Conclusion
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DeepTMA: Heuristic based on Graph Neural Networks

Introduction

Principle: Replace exhaustive search by a
fast heuristic [Geyer and Bondorf, 2019]

Heuristic

e Use Graph Neural Network
e Classification problem for cuts

Graph formulation

¢ Nodes: flows, servers, cuts
e Edges: relationships between elements
e Prediction if cut is applied or not

Network
of servers
and flows

Figure 2: Classification problem

Network Calculus
TMA Analysis

4
Cuts Recommendation

Graph Transformation
and Neural Network

Figure 3: Approach

End-to-End
Late_ncies

Training
Points
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DeepTMA: Heuristic based on Graph Neural Networks
Problem formulation as graph

f, y Input features:
fs ) Sz S3 S4 [rate, latency]
f2 f3
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DeepTMA: Heuristic based on Graph Neural Networks

Graph Neural Networks — Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict

feature of nodes oy

Algorithm

Principle o Initialize h{ according to features of nodes

e fort=1,..,Tdo
o a) - AGGREGATE ({h‘j*” lue Nbr(v)})
e h" - COMBINE (hﬁ‘*",a‘v”)

e Each node has a hidden vector h, € R¥
e ...computed according to the vector of its neighbors

e ...and are propagated through the graph
e return READOUT (h{")
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DeepTMA: Heuristic based on Graph Neural Networks
Graph Neural Networks — Implementation

Implementation (simplified)

e Initialize h according to features of nodes Different approaches
e fort=1,..,Tdo

o AGGREGATE — a) = 3, ey W ™"

e COMBINE — h(vt) = Neural Network (h(vr’”, a(vt))

Gated-Graph Neural Network

Graph Convolution Network

Graph Attention Networks
e READOUT — return Neural Network (h(vﬂ)

Graph Spatial-Temporal Networks

Training — Hot area of research in the ML community

e Using standard gradient descent techniques
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Numerical evaluation

Previous results from [Geyer and Bondorf, 2019]

e We already showed that DeepTMA is a fast and accurate method
e Relative error: metric used for estimating tightness:
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Numerical evaluation

Dataset generation for training

e Generation of 172 374 networks with tandem, tree or random graph topology

e Random generation of curve parameters for servers and flows

e Evaluation of each network using DiscoDNC and extract intermediary results of TMA
e Dataset available online: https://github.com/fabgeyer/dataset-deeptma-extension

Parameter \ Min Max Mean Median
# of servers 2 41 14.6 12
# of flows 3 203 101.2 100
# of tandem combinations 2 197196 1508,5 384
# of nodes in analyzed graph 10 2093 545.2 504
# of tandem combination per flow 2 65536 19.4 4
# of flows per server 1 173 18.1 10

Table 1: Statistics about the generated dataset.
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Numerical evaluation

Tightness vs. network size used for training

® Full dataset x Networks up to 100 flows 4 Networks up to 50 flows
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Numerical evaluation

Evaluation dataset

e Evaluated also on dataset from [Bondorf et al., 2017] with larger networks
e Up to 2 orders of magnitude larger in terms of number of servers and flows per network
e Neural network not trained on such large networks

Parameter \ Min Max Mean Median
# of servers 38 3626 863.0 693
# of flows 152 14504 3452,0 2772
# of tandem combinations 2418 121860 24777,6 18869
# of nodes in analyzed graph 1358 113162 251377 19518
# of tandem combination per flow 2 512 7.3 8
# of flows per server 1 467 16.4 12

Table 2: Statistics about the set of networks from [Bondorf et al., 2017].
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Numerical evaluation
Tightness in larger dataset

——RND --- RND, ----RNDy4 RNDg
—— DeepTMA - - - DeepTMA;, - ---DeepTMA, - DeepTMAg
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Number of servers in network
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Numerical evaluation

Feature importance

® Tandem networks = Tree networks a Random networks

ServiceRate A®x

A <@
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Conclusion

Contributions

* Framework combining network calculus and graph-based deep learning
¢ Results show scalabilty on networks larger by 2 orders of magnitude
e Feature importance will guide next iterations of the method
e Dataset available online for reproducing our results:
— https://github.com/fabgeyer/dataset-deeptma-extension

Future work

e Applicability at other problems in Network Calculus
e Extension to other formal methods for network verification

Computation effort

Opt.
TMA
SFA DeepTMA
PMOO
TFA Ideal
Tightness
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