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Motivation
Worst-Case End-to-End Performance Analysis

Probability

End-to-end network delay
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Computation effort

Tightness

Analysis methods

Ideal

• Trade-off between computational effort and tightness
• This talk: network analysis method with good tightness and fast execution
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Motivation
Network Calculus – Basics
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Basis: Cumulative arrivals and services [Cruz, 1991a]

DA

Arrival curve α: A (t) − A (t − s) ≤ α(s), ∀t ≤ s

Service curve β: a server is said to offer a strict
service curve β if, during any backlogged period of
duration u, the output of the system is at least equal to
β(u)

β
α α
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Motivation
Network Calculus – Network Analysis

How to compute end-to-end performance?

s1 s2 s3 s4
f1
f2 f3

f4

TFA – Total Flow Analysis [Cruz, 1991b]

Step 1: Compute delay at each server on the path

s1 s2 s3 s4
f1
f2 f s4

3f s3
3

f4

Step 2: Sum delays

Server concatenation [Le Boudec and Thiran, 2001]

β1 β2 β3
α α

′

(min, +) algebra gives us:

β1 ⊗ β2 ⊗ β3
α α

′

→ Pay Bursts Only Once principle
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Motivation
Network Calculus – Network Analysis

SFA – Separate Flow Analysis
[Le Boudec and Thiran, 2001]

Step 1: Compute per-server residual service

s1 s2 s3
lo s4

lof1
f2 f3

f4

Step 2: Concatenate the servers

s1 s2 s3
lo ⊗ s4

lo

f3

Step 3: Compute delay over concatenated server

PMOO – Pay Multiplexing Only Once
[Schmitt et al., 2008b]

Step 1: Concatenate the servers

s1 s2 s3 ⊗ s4
f1
f2 f3

f4

Step 2: Compute residual service

s1 s2 (s3 ⊗ s4)lo

f3

Step 3: Compute delay over concatenated server
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Motivation
Network Calculus – TMA

TMA – Tandem Matching Analysis [Bondorf et al., 2017]

• Main concept: apply concatenation only for some servers
• Exhaustive search to find which concatenations will result in the tightest end-to-end delay → O

(
2n−1

)
SFA

β1 β2 β3
α α

′
Cut Cut

PMOO

β1 ⊗ β2 ⊗ β3
α α

′

Alternative 1

β1 ⊗ β2 β3
α α

′
Cut

Alternative 2

β1 β2 ⊗ β3
α α

′
Cut
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Motivation
Network Calculus – DeepTMA

Computation effort

Tightness

IdealTFA

SFA

PMOO

Opt.

DeepTMA

TMA

Opt.: [Schmitt et al., 2008a][Bouillard et al., 2010]

Approach: Avoid TMA’s exhaustive search using ML
[Geyer and Bondorf, 2019]

→ DeepTMA:
• Main idea: use neural networks for predicting best cuts
• Even if the heuristic is wrong, the bounds are still valid

Network
of servers
and flows

Network Calculus
TMA Analysis

Heuristic

End-to-End
Latencies

Cuts Recommendation

Figure 1: Approach
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Motivation
Network Calculus – Contributions

[Geyer and Bondorf, 2019] introduced DeepTMA, but did not explore it’s scalability or robustness

New results: Explore the robustness of DeepTMA

• Influence of network size (number of flows and servers) and topology type on accuracy and tightness?
• Scalability on larger networks (up to 10 000 s of flows)?
• Importance of features used by the machine learning algorithm?
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Outline

DeepTMA: Heuristic based on Graph Neural Networks

Numerical evaluation

Conclusion
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DeepTMA: Heuristic based on Graph Neural Networks
Introduction

Principle: Replace exhaustive search by a
fast heuristic [Geyer and Bondorf, 2019]

Heuristic

• Use Graph Neural Network
• Classification problem for cuts

Graph formulation

• Nodes: flows, servers, cuts
• Edges: relationships between elements
• Prediction if cut is applied or not

β1 β2 β3
α α

′
Cut? Cut?

Figure 2: Classification problem

Network
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Graph Transformation
and Neural Network

Training
Points

Figure 3: Approach
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DeepTMA: Heuristic based on Graph Neural Networks
Problem formulation as graph
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Input features:

[Pr(cut)]
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DeepTMA: Heuristic based on Graph Neural Networks
Graph Neural Networks – Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict
feature of nodes ov

Principle

• Each node has a hidden vector hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are propagated through the graph

Algorithm

• Initialize h(0)
v according to features of nodes

• for t = 1, ... , T do
• a(t)

v = AGGREGATE
({

h(t−1)
u | u ∈ Nbr(v)

})
• h(t)

v = COMBINE
(

h(t−1)
v , a(t)

v

)
• return READOUT

(
h(T )

v

)
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DeepTMA: Heuristic based on Graph Neural Networks
Graph Neural Networks – Implementation

Implementation (simplified)

• Initialize h(0)
v according to features of nodes

• for t = 1, ... , T do
• AGGREGATE → a(t)

v =
∑

u∈Nbr(v) h(t−1)
u

• COMBINE → h(t)
v = Neural Network

(
h(t−1)

v , a(t)
v

)
• READOUT → return Neural Network

(
h(T )

v

)
Training

• Using standard gradient descent techniques

Different approaches

• Gated-Graph Neural Network
• Graph Convolution Network
• Graph Attention Networks
• Graph Spatial-Temporal Networks
• . . .

→ Hot area of research in the ML community
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Numerical evaluation
Previous results from [Geyer and Bondorf, 2019]

• We already showed that DeepTMA is a fast and accurate method
• Relative error: metric used for estimating tightness:

RelErr fi =
DelayDeepTMA

fi
− DelayTMA

fi

DelayTMA
fi

(1)
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Numerical evaluation
Dataset generation for training

• Generation of 172 374 networks with tandem, tree or random graph topology
• Random generation of curve parameters for servers and flows
• Evaluation of each network using DiscoDNC and extract intermediary results of TMA
• Dataset available online: https://github.com/fabgeyer/dataset-deeptma-extension

Parameter Min Max Mean Median

# of servers 2 41 14.6 12
# of flows 3 203 101.2 100
# of tandem combinations 2 197 196 1508,5 384
# of nodes in analyzed graph 10 2093 545.2 504
# of tandem combination per flow 2 65 536 19.4 4
# of flows per server 1 173 18.1 10

Table 1: Statistics about the generated dataset.
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Numerical evaluation
Tightness vs. network size used for training
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Numerical evaluation
Evaluation dataset

• Evaluated also on dataset from [Bondorf et al., 2017] with larger networks
• Up to 2 orders of magnitude larger in terms of number of servers and flows per network
• Neural network not trained on such large networks

Parameter Min Max Mean Median

# of servers 38 3626 863.0 693
# of flows 152 14 504 3452,0 2772
# of tandem combinations 2418 121 860 24 777,6 18 869
# of nodes in analyzed graph 1358 113 162 25 137,7 19 518
# of tandem combination per flow 2 512 7.3 8
# of flows per server 1 467 16.4 12

Table 2: Statistics about the set of networks from [Bondorf et al., 2017].
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Numerical evaluation
Tightness in larger dataset
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Numerical evaluation
Feature importance
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Conclusion

Contributions

• Framework combining network calculus and graph-based deep learning
• Results show scalabilty on networks larger by 2 orders of magnitude
• Feature importance will guide next iterations of the method
• Dataset available online for reproducing our results:

→ https://github.com/fabgeyer/dataset-deeptma-extension

Future work

• Applicability at other problems in Network Calculus
• Extension to other formal methods for network verification

Computation effort

Tightness

IdealTFA

SFA

PMOO

Opt.

TMA

DeepTMA
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