On the Robustness of Deep Learning-predicted Contention Models for Network Calculus

Fabien Geyer^{1,2} and Steffen Bondorf³

IEEE ISCC 2020

Tuesday 7th July, 2020

¹Airbus Central R&T Munich, Germany ²Chair of Network Architectures and Services Technical University of Munich, Germany ³Faculty of Mathematics, Center of Computer Science Ruhr University Bochum, Germany

Worst-Case End-to-End Performance Analysis

- Trade-off between computational effort and tightness
- This talk: network analysis method with good tightness and fast execution

Network Calculus - Basics

Network Calculus - Network Analysis

How to compute end-to-end performance?

TFA - Total Flow Analysis [Cruz, 1991b]

Step 1: Compute delay at each server on the path

Step 2: Sum delays

Server concatenation [Le Boudec and Thiran, 2001]

(min, +) algebra gives us:

 \rightarrow Pay Bursts Only Once principle

Network Calculus - Network Analysis

SFA – Separate Flow Analysis [Le Boudec and Thiran, 2001]

Step 1: Compute per-server residual service

Step 2: Concatenate the servers

Step 3: Compute delay over concatenated server

PMOO – Pay Multiplexing Only Once [Schmitt et al., 2008b]

Step 1: Concatenate the servers

Step 2: Compute residual service

Step 3: Compute delay over concatenated server

Network Calculus - TMA

TMA – Tandem Matching Analysis [Bondorf et al., 2017]

- Main concept: apply concatenation only for some servers
- Exhaustive search to find which concatenations will result in the tightest end-to-end delay $\rightarrow O(2^{n-1})$

Network Calculus – DeepTMA

Motivation Network Calculus – Contributions

[Geyer and Bondorf, 2019] introduced DeepTMA, but did not explore it's scalability or robustness

New results: Explore the robustness of DeepTMA

- Influence of network size (number of flows and servers) and topology type on accuracy and tightness?
- Scalability on larger networks (up to 10000 s of flows)?
- Importance of features used by the machine learning algorithm?

Outline

DeepTMA: Heuristic based on Graph Neural Networks

Numerical evaluation

Conclusion

Principle: Replace exhaustive search by a fast heuristic [Geyer and Bondorf, 2019]

Heuristic

- Use Graph Neural Network
- Classification problem for cuts

Graph formulation

- Nodes: flows, servers, cuts
- Edges: relationships between elements
- Prediction if cut is applied or not

Figure 3: Approach

Problem formulation as graph

Graph Neural Networks – Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict feature of nodes o_{ν}

Principle

- Each node has a *hidden* vector $\mathbf{h}_{v} \in \mathbb{R}^{k}$
- ... computed according to the vector of its neighbors
- ... and are propagated through the graph

Algorithm

• Initialize $\mathbf{h}_{v}^{(0)}$ according to features of nodes

for
$$t = 1, ..., T$$
 do

•
$$\mathbf{a}_{v}^{(t)} = AGGREGATE\left(\left\{\mathbf{h}_{u}^{(t-1)} \mid u \in Nbr(v)\right\}\right)$$

•
$$\mathbf{h}_{v}^{(t)} = COMBINE\left(\mathbf{h}_{v}^{(t-1)}, \mathbf{a}_{v}^{(t)}\right)$$

• return READOUT $(\mathbf{h}_v^{(T)})$

Graph Neural Networks - Implementation

Implementation (simplified)

- Initialize $\mathbf{h}_{v}^{(0)}$ according to features of nodes
- for *t* = 1, ..., *T* do
 - AGGREGATE $\rightarrow \mathbf{a}_v^{(t)} = \sum_{u \in Nbr(v)} \mathbf{h}_u^{(t-1)}$
 - COMBINE $\rightarrow \mathbf{h}_{v}^{(t)}$ = Neural Network $\left(\mathbf{h}_{v}^{(t-1)}, \mathbf{a}_{v}^{(t)}\right)$
- READOUT \rightarrow return Neural Network $\left(\mathbf{h}_{v}^{(T)}\right)$

Training

Using standard gradient descent techniques

Different approaches

- Gated-Graph Neural Network
- Graph Convolution Network
- Graph Attention Networks
- Graph Spatial-Temporal Networks
- . . .
- \rightarrow Hot area of research in the ML community

Previous results from [Geyer and Bondorf, 2019]

- · We already showed that DeepTMA is a fast and accurate method
- Relative error: metric used for estimating tightness:

Dataset generation for training

- Generation of 172374 networks with tandem, tree or random graph topology
- Random generation of curve parameters for servers and flows
- Evaluation of each network using DiscoDNC and extract intermediary results of TMA
- Dataset available online: https://github.com/fabgeyer/dataset-deeptma-extension

Parameter	Min	Max	Mean	Median
# of servers	2	41	14.6	12
# of flows	3	203	101.2	100
# of tandem combinations	2	197 196	1508,5	384
# of nodes in analyzed graph	10	2093	545.2	504
# of tandem combination per flow	2	65 536	19.4	4
# of flows per server	1	173	18.1	10

Table 1: Statistics about the generated dataset.

Tightness vs. network size used for training

• Full dataset × Networks up to 100 flows A Networks up to 50 flows

Evaluation dataset

- Evaluated also on dataset from [Bondorf et al., 2017] with larger networks
- Up to 2 orders of magnitude larger in terms of number of servers and flows per network
- Neural network not trained on such large networks

Parameter	Min	Мах	Mean	Median
# of servers	38	3626	863.0	693
# of flows	152	14 504	3452,0	2772
# of tandem combinations	2418	121 860	24777,6	18 869
# of nodes in analyzed graph	1358	113162	25 137,7	19518
# of tandem combination per flow	2	512	7.3	8
# of flows per server	1	467	16.4	12

Table 2: Statistics about the set of networks from [Bondorf et al., 2017].

Tightness in larger dataset

Feature importance

• Tandem networks × Tree networks ▲ Random networks

Conclusion

Contributions	Computation effort		
Contributions		Opt.	
 Framework combining network calculus and graph-based deep learning 			
 Results show scalability on networks larger by 2 orders of magnitude 		TMA	
 Feature importance will guide next iterations of the method 			
 Dataset available online for reproducing our results: 	OE4		
\rightarrow https://github.com/fabgeyer/dataset-deeptma-extension	PMOO	DeepTMA	
Future work	TFA	Ideal	
 Applicability at other problems in Network Calculus 			
 Extension to other formal methods for network verification 		Tightness	

Bibliography

[Bondorf et al., 2017] Bondorf, S., Nikolaus, P., and Schmitt, J. B. (2017).

Quality and cost of deterministic network calculus – design and evaluation of an accurate and fast analysis.

Proc. ACM Meas. Anal. Comput. Syst. (POMACS), 1(1):16:1-16:34.

[Le Boudec and Thiran, 2001] Le Boudec, J.-Y. and Thiran, P. (2001).

Network Calculus: A Theory of Deterministic Queuing Systems for the Internet.

Springer-Verlag.

[Bouillard et al., 2010] Bouillard, A., Jouhet, L., and Thierry, É. (2010).

Tight performance bounds in the worst-case analysis of feed-forward networks.

In Proc. of IEEE INFOCOM.

[Cruz, 1991a] Cruz, R. L. (1991a).

A calculus for network delay, part I: Network elements in isolation. *IEEE Trans. Inf. Theory*, 37(1):114–131.

[Cruz, 1991b] Cruz, R. L. (1991b). A calculus for network delay, part II: Network analysis.

IEEE Trans. Inf. Theory, 37(1):132-141.

[Geyer and Bondorf, 2019] Geyer, F. and Bondorf, S. (2019).

DeepTMA: Predicting effective contention models for network calculus using graph neural networks. In *Proc. of INFOCOM*.

[Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The graph neural network model. *IEEE Trans. Neural Netw.*, 20(1):61–80.

[Schmitt et al., 2008a] Schmitt, J. B., Zdarsky, F. A., and Fidler, M. (2008a). Delay bounds under arbitrary multiplexing: When network calculus leaves you in the lurch.... In Proc. of IEEE INFOCOM.

[Schmitt et al., 2008b] Schmitt, J. B., Zdarsky, F. A., and Martinovic, I. (2008b).

Improving performance bounds in feed-forward networks by paying multiplexing only once. In *Proc. of GI/ITG MMB*.