

RUHR-UNIVERSITÄT BOCHUM

VIRTUAL CROSS-FLOW DETOURING IN THE DETERMINISTIC NETWORK CALCULUS

Steffen Bondorf (RUB) and Fabien Geyer (TUM | Airbus CRT)

Overview

- Bisecting the Title
 Virtual Cross-Flow Detouring in the Deterministic Network Calculus
 - Deterministic Network Calculus (DNC)
 - Importance of Bounding Cross-Flows
 - Virtually Changing Paths in the DNC Analysis
- Virtual Cross Flow Detouring
 - How and when does it work?
 - Numerical Evaluation

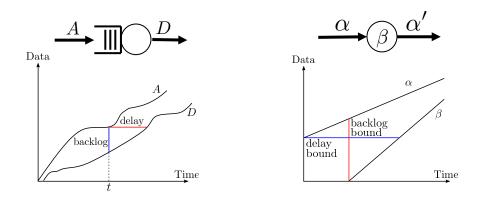
Motivation: Worst-Case Performance Analysis

Networks embedded into safety-critical systems need performance assurances \rightarrow Certification

Know the worst-case performance during operation \rightarrow Formal verification required

Analyze and rank different network configurations reliably

Prevent over-provisioned designs \rightarrow Accuracy matters


Our choice: Deterministic Network Calculus (DNC)

Network Calculus Modeling

Worst-case bounds on system behavior: cumulative arrivals and service [Cruz91]

Arrival Curve α : $\alpha(s) \ge A(t) - A(t-s) \,\forall s \le t$

Strict Service Curve β : A server is said to offer a strict service curve β if, during any backlogged period of duration u, the output of the system is at least equal to $\beta(u)$.

RUHR

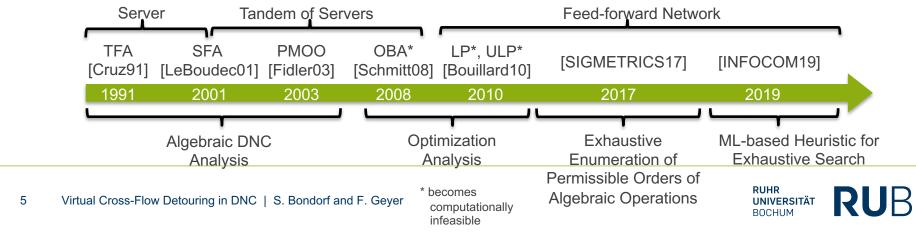
BOCHUM

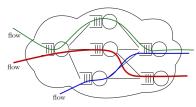
UNIVERSITÄT

Network Calculus Analysis: (min,+)-Algebra

A set of (min,+)-algebraic operations [LeBoudec01]

Output bound $(\alpha \oslash \beta)(d) = \sup_{u \ge 0} \{\alpha(d+u) - \beta(u)\} =: \alpha'(d)$

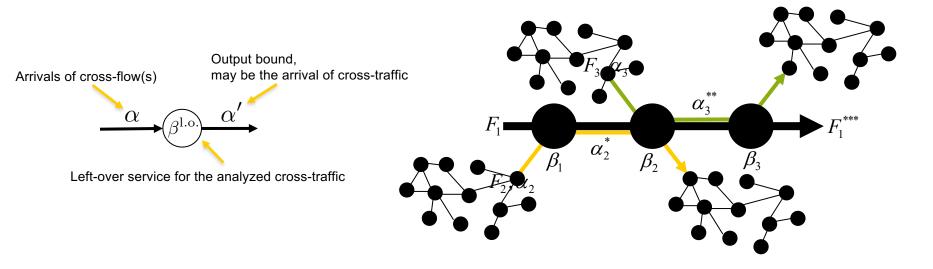

Left-over service curve


$$(\beta \ominus \alpha) (d) = \sup_{0 \le u \le d} \{ (\beta - \alpha) (u) \} =: \beta^{\text{l.o}}$$

A history of improvements to the analysis

Aggregation of flows $(\alpha_1 + \alpha_2)(d) = \alpha_1(d) + \alpha_2(d)$

Concatenation of servers (sequences/tandems) $(\beta_1 \otimes \beta_2)(d) = \inf_{0 \le s \le d} \left\{ \beta_1(d-s) + \beta_2(s) \right\} = \beta_{\langle 1,2 \rangle}$



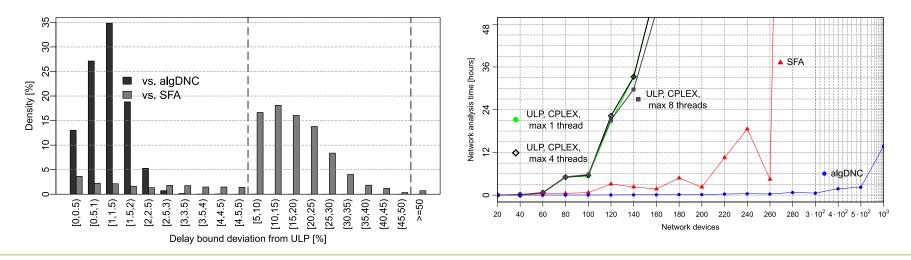
Latest Focus: Bounding Cross-traffic Arrivals [SIGMETRICS17]

Feed-forward networks are analyzed as a sequence of tandems.

Bounding the arrivals of cross-traffic arrival bounding is required at these tandems, computed as the output of a sub-network crossed before interfering with the analyzed flow.

Bounding Cross-traffic Arrivals Done Right: Impact

Algebraic analysis is competitive with optimization, in quality and cost [SIGMETRICS17]


9 networks, 12376 flows

Median Delay Bound Deviation from optimization: 1.142% 99th percentile at 2.48% Multiple orders of magnitude faster than optimization

RUHR

BOCHUM

UNIVERSITÄT

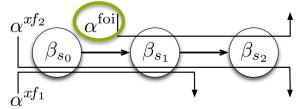
However ...

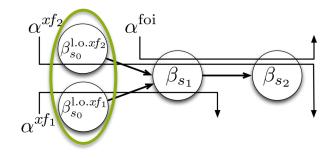
Algebraic DNC suffers from Mismatches between Modeling and Analysis Capabilities

The DNC analysis might not be able to fully consider modeled behavior. Instead, it applies worst-case assumptions (seldom made explicit to the modeler).

Our objective:

Find, quantify and mitigate such problems


Mismatch: Aggregate Flows, Separate Analysis (I) [ICC17]


Simple Sample Scenario:

- Bound the end-to-end delay of the flow of interest (foi)
- Subject to cross-flows xf₁ and xf₂

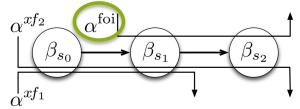
Problem:

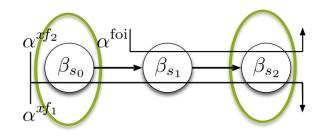
- Cross-flow entanglement on servers s₁ and s₂
- Enforces DNC to separately bound their arrivals at s₁
- DNC analysis proceeding:
 - Explicitly assignment priorities to establish the worst case for each of the two cross-flows
 - Simultaneously assume xf₁ < xf₂ and xf₂ < xf₁
- Mutually exclusive left-over β operations
- A realistic system cannot behave like this!
- Overly pessimistic analysis!

RUHR

UNIVERSITÄT BOCHUM

Mismatch: Aggregate Flows, Separate Analysis (II) [ICC17]


Simple Sample Scenario:


- Bound the end-to-end delay of the flow of interest (foi)
- Subject to cross-flows xf₁ and xf₂

Mitigation: Virtual Flow Prolongation at the End

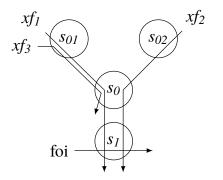
- Change cross-flow entanglement on servers s₁ and s₂
- Allows DNC to aggregately bound their arrivals at s₁
- DNC analysis proceeding: No explicitly assignment priorities required for the single cross-flow aggregate
- No mutually exclusive left-over β
- But: Additional interference at s₂
- It's safe replace the original model
- It's a tradeoff

10

RUHR

JNIVERSITÄT

It's changing flow paths, yet only in the analysis making it virtual!


Virtual Cross-Flow Detouring

Simple Sample Scenario:

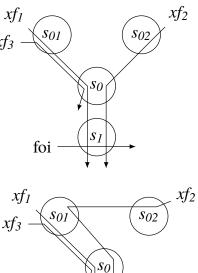
- Bound the end-to-end delay of the flow of interest (foi)
- Subject to cross-flows xf₁ and xf₂

Problem:

- There is another flow, xf₃, that interferes with xf₁
- xf₁ and xf₃ both cross the server tandem s₀₁ and s₀
- xf₁ and xf₂ aggregately interfere with the foi at s₁
- The recursive DNC analysis proceeding starts at the foi:
 - xf₁ and xf₂ are bounded in aggregate at s₀,
 i.e., s₀ must be analyzed in isolation
 - Then, xf_1 and xf_3 cannot be analyzed on the entire tandem s_{01} and s_0
 - Instead, the analysis assumes worst-case bustiness of xf₃ at s₀₁ and at s₀
- Overly pessimistic analysis!

RUHR

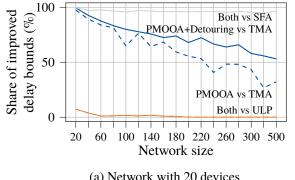
JNIVERSITÄT


Virtual Cross-Flow Detouring

Simple Sample Scenario:

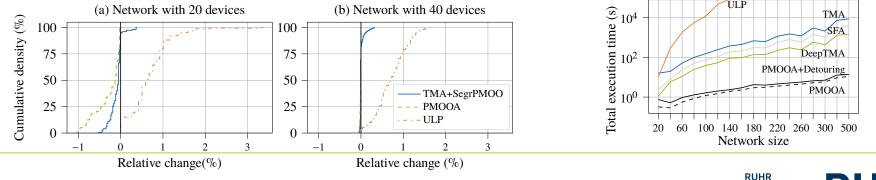
- Bound the end-to-end delay of the flow of interest (foi)
- Subject to cross-flows xf₁ and xf₂

Mitigation: Virtual Cross-Flow Detouring


- Assume (in the analysis only!) xf₂ crosses s₀₁, too
- Entirely different interference pattern that matches analysis capabilities
 → DNC can compute a better bound than before
- But is this virtual model transformation really more pessimistic?
 - Added pessimism is very tightly coupled to the PMOO analysis!
 - It cannot make use of the potential positive changes [Schmitt08]. The location of interference might reduce the load at s₀ (less bursty xf₂), yet, not in the PMOO analysis.
- A generalization of flow prolongation at the end
- Many potential detouring alternatives → a heuristic *PMOOA+Detouring* is in the paper

Numerical Evaluation

Competitive or superior Delay Bounds vs. TMA



Same networks as before, main competitors:

- PMOO Analysis without Detouring (PMOOA)
- exhaustive algebraic analysis (TMA)
 - TMA with bound tightening SegrPMOO addition
 - ML-augmented TMA (DeepTMA)
 - Optimization-based analysis (ULP)

UNIVERSITÄT BOCHUM

13 Virtual Cross-Flow Detouring in DNC | S. Bondorf and F. Geyer

Conclusion

- Determinsitic Network Calculus is an advanced tool for performance modeling and analysis
 but its generic feed-forward analysis still has some problems
- We uncovered and mitigated one of these problems with virtual cross-flow detouring
- We were able to design a simple heuristic that can compute comeptitive delay bounds at a fraction of the runtime of other analyses

References

[SIGMETRICS17] S. Bondorf, P. Nikolaus, and J. Schmitt. Quality and Cost of Deterministic Network Calculus – Design and Evaluation of an Accurate and Fast Analysis. In Proc. of ACM SIGMETRICS 2017; full paper in Proceedings of the ACM on Measurement and Analysis of Computing Systems (POMACS), volume 1, 2017. [Bouillard10] A. Bouillard, L. Jouhet, and E. Thierry. *Tight Performance Bounds in the Worst- Case Analysis of Feed-Forward Networks*. In Proc. of IEEE INFOCOM. 2010.

RUHR

JNIVERSITÄT

[Cruz91] R. L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation. In IEEE Transactions on Information Theory, 1991, and

- R. L. Cruz. A Calculus for Network Delay, Part II: Network Analysis. In IEEE Transactions on Information Theory, 1991.
- [Fidler03] M. Fidler. Extending the Network Calculus Pay Bursts Only Once Principle to Aggregate Scheduling.

In Proc. of the International Workshop on Quality of Service in Multiservice IP Networks (QoS-IP), 2003.

[LeBoudec01] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Springer, 2001.

[Schmitt08] J. Schmitt, F. A. Zdarsky, and M. Fidler. *Delay Bounds under Arbitrary Multiplexing: When Network Calculus Leaves You in the Lurch ...* In Proc. of IEEE INFOCOM, 2008.

[INFOCOM19] F. Geyer and S. Bondorf. *DeepTMA: Predicting Effective Contention Models for Network Calculus using Graph Neural Networks*. In Proc. of INFOCOM, 2019.

[ICC17] S. Bondorf. Better Bounds by Worse Assumptions – Improving Network Calculus Accuracy by Adding Pessimism to the Network Model. In Proc. of the IEEE International Conference on Communications (ICC), 2017.

